

2023

P-153

Course Specification (Bachelor)

Course Title: Mechanics and Heat Lab

Course Code: PHYS26252

Program: Physics

Department: Physics

College: Science

Institution: University of Bisha

Version: 3

Last Revision Date: 25 July 2023

Table of Contents

A. General information about the course:	3
1. Course Identification	3
2. Teaching mode (mark all that apply)	3
3. Contact Hours (based on the academic semester)	4
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	5
D. Students Assessment Activities	5
E. Learning Resources and Facilities	7
1. References and Learning Resources	7
2. Required Facilities and equipment	7
F. Assessment of Course Quality	7
G. Specification Approval Data	8

A. General information about the course:

2

1. Course Identification

1. Credit hours:

2. Course type

Α.	University 🗆	College 🗆	Department⊠	Track	Others 🗆
Β.	Required 🖂	Elective			
3.	Level/year at wl	nich this course	e is offered:	4 th Level / 2 nd	year
4. Course general Description					
The course introduces the main experiences of classical mechanics and heat, as a support					
for the theoretical courses of classical mechanics, thermodynamics.					

5. Pre-requirements for this course:

NA

6. Co- requirements for this course:

NA

7. Course Main Objective(s)

Analyze and interpret experimental data of mechanics and heat.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1.	Traditional classroom	4	100%
2.	E-learning		
3.	HybridTraditional classroomE-learning		
4.	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	
2.	Laboratory/Studio	60
3.	Field	
4.	Tutorial	
5.	Others (specify)	
	Total	60

B. Course Learning Outcomes (CLOs), Teaching Strategies and

Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			
1.1	Recognize the theoretical basis for ten experiments related to classical mechanics and heat lab.	K.1	Lectures Solve problems	Written test Reports Homework Quizzes
2.0	Skills			
2.1	Prepare the appropriate equipment for the experiment.	S.2		A shi su su su filo
2.2	Use the experiment measurements devices correctly.	S.2	Laboratory practices	laboratory test
2.3	Analyze and interpret experimental data.	S.2		Reports
2.4	Communicate positively with others.	S.3	Presentation Work group	Reports Presentation
3.0	Values, autonomy, and responsibili	ty		
3.1	Participate in the development of team performance.	V.3	Work group	Reports Presentation

C. Course Content

No	List of Topics	Contact Hours
1.	Motion in inclined surface.	6
2.	Newton's Laws with Dynamics Cart and Track System.	6
3	The Physical Pendulum.	6
0.	Bifilar torsional pendulum.	
	Circular Motion.	6
4.	or	
	Angular Momentum.	
5.	Yang models.	6
6.	Joule's Equivalent.	6
7.	Newton's law of cooling.	6
8.	Boyle's law and/or Charles's law.	6
9.	The melting point of wax.	6
10.	The thermal expansion.	6
	Total	60

Table: The matrix of consistency between the content and the learning outcomes of the course.

		Course Learning Outcomes				
	1.1	2.1	2.2	2.3	2.4	3.1
Topic 1	V	V	V	V	V	V
Topic 2	V	V	V	V	V	V
Topic 3	V	V	V	V	V	V
Topic 4	V	V	V	V	V	V
Topic 5	V	V	V	V	V	V
Topic 6	V	V	V	V	V	V
Topic 7	V	V	V	V	V	V
Topic 8	V	V	V	V	V	V
Topic 9	V	V	V	V	V	V
Topic 10	V	V	V	V	V	V

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Homework, quizzes, reports, and presentation.	1: 15	10 %
2.	Achievement file.	1:15	15 %
3.	Midterm practical exam *	9: 10	25 %

4. Final practical exam** End of Semester 50 %	No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
	4.	Final practical exam**	End of Semester	50 %

 $\boldsymbol{*}$ (20-marks for practical part and 5-marks for the theoretical part)

** (40-marks for practical part and 10-marks for the theoretical part)

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	 Experimental Reports. Supplementary Materials Physics for Scientists and Engineers, 10th Edition, by Raymond A. Serway, John W. Jewett, BROOKS/COLE CENGAGE Learning, Boston USA,ASIN : B00E6TSR92, (2019).
Supportive References	- Fundamentals of Physics Extended, 12th Edition, David Halliday, Robert Resnick, Jearl Walker, Wiley, 2021.
Electronic Materials	 Blackboard. PowerPoint presentations. Digital library of University of Bisha <u>https://ub.deepknowledge.io/Bisha</u>
Other Learning Materials	NA

2. Required Facilities and equipment

Items	Resources
facilities	Classrooms, Physics lab.
Technology equipment	Data show or smart board.
Other equipment	 Laboratory equipment Motion in inclined surface. Newton's Laws with Dynamics Cart and Track System. The Physical Pendulum. Circular Motion or Angular Momentum. Yang models. Joule's Equivalent. Newton's law of cooling. Boyle's law and/or Charles's law. The melting point of wax. The thermal expansion.

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Extent of achievement of course learning outcomes.	Teachers, students.	Direct (Final exams), Indirect (Questionnaire).
Effectiveness of teaching.	Teachers, students.	Indirect (Questionnaire)

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of assessment.	Teachers, students.	Indirect (Questionnaire)
Quality of learning resources	Teachers, students.	Indirect (Questionnaire)
Quality of facilities available	Teachers, students.	Indirect (Questionnaire)
Fairness of evaluation	Peer reviewer.	Direct (Final exams reevaluation).

G. Specification Approval Data

COUNCIL /COMMITTEE	College of Science Council
REFERENCE NO.	20
DATE	17 August 2023

